

First Order Differential Equations

Separable: $M(x) dx = N(y) dy$

$$\text{Solution: } \int M(x) dx = \int N(y) dy$$

Linear: $y' + p(x)y = g(x)$

$$\text{Solution: } \mu y = \int \mu g(x) dx$$

$$\text{Integrating Factor: } \mu = e^{\int p(x) dx}$$

Exact: $M(x, y) dx + N(x, y) dy = 0$

$$\text{where } \frac{\partial}{\partial y} M dy dx = \frac{\partial}{\partial x} N dx dy$$

$$\text{Solution: } \Psi(x, y) = c \text{ where } \frac{\partial}{\partial x} \Psi = M \\ \frac{\partial}{\partial y} \Psi = N$$

$$\Psi = \text{"least common sum"} \begin{cases} \int M(x, y) dx \\ \int N(x, y) dy \end{cases}$$

To make a non-exact equation become exact:
 $\mu M(x, y) dx + \mu N(x, y) dy = 0$
 Integrating Factor: $\ln \mu = \int \frac{M_y - N_x}{N} dx$
 or $\ln \mu = \int \frac{N_x - M_y}{M} dy$
 (integrals above must be single variable)

Autonomous: $y' = f(y)$

$f(y_0) = 0 \Rightarrow$ equilibrium solution at $y = y_0$

$f(y_0) < 0 \Rightarrow$ solutions go down at $y = y_0$

$f(y_0) > 0 \Rightarrow$ solutions go up at $y = y_0$

"unstable equilibrium" = solutions go away

"stable equilibrium" = solutions go towards

"semi-stable equilibrium" = solutions mixed

Homogeneous: $y' = \frac{P(x, y)}{Q(x, y)}$

P and Q are polynomials in x and y

all $x^n y^m$ have total power $(n + m)$ the same

$$\text{Multiply: } y' = \frac{P(x, y)}{Q(x, y)} \cdot \frac{\frac{1}{x^{n+m}}}{\frac{1}{x^{n+m}}}$$

$$\text{Substitute: } \left(\frac{y}{x}\right) = v \text{ and } y' = v + xv'$$

(This converts equation to a separable DE.)

Bernoulli: $y' + p(x)y = q(x)y^n$

$$\text{Rewrite: } y^{-n} y' + p(x) y^{1-n} = q(x)$$

$$\text{Substitute: } y^{1-n} = v \text{ and } y^{-n} y' = \frac{1}{1-n} v'$$

(This converts equation to a linear DE.)

Second Order Differential Equations

Homogeneous Linear, Constant Coefficients:

$$a y'' + b y' + c y = 0$$

$$\text{Characteristic Eqn: } a r^2 + b r + c = 0$$

Solution depends on the type of roots:

- $r = r_1, r_2$ (real, not repeated)
 $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- $r = \alpha \pm \beta i$ (complex conjugates)
 $y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$
- $r = r_0, r_0$ (repeated root)
 $y = c_1 e^{r_0 x} + c_2 x e^{r_0 x}$

Reduction of Order:

$$y'' + p(x)y' + q(x)y = 0 \\ \text{with one solution } y_1 = y_1(x) \text{ known}$$

$$\text{Substitute: } y = v y_1$$

$$y' = v y_1' + v' y_1$$

$$y'' = v y_1'' + 2v' y_1' + v'' y_1$$

$$\text{DE becomes: } (2v' y_1' + v'' y_1) + p v' y_1 = 0$$

$$\text{Separable: } \frac{1}{(v')} (v')' = - \left(p + \frac{2y_1'}{y_1} \right)$$

Undetermined Coefficients:

$$y'' + p(x)y' + q(x)y = g(x)$$

homogeneous solution $y = c_1 y_1 + c_2 y_2$ known

General solution is $y = c_1 y_1 + c_2 y_2 + Y_p$

Y_p is a *particular solution*

Find Y_p by guessing a form and then plugging into DE:

$$\bullet g = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

$$Y_p = x^s (A_0 x^n + A_1 x^{n-1} + \dots + A_n)$$

$$\bullet g = (a_0 x^n + a_1 x^{n-1} + \dots + a_n) e^{\alpha x}$$

$$Y_p = x^s (A_0 x^n + \dots + A_n) e^{\alpha x}$$

$$\bullet g = (a_0 x^n + \dots + a_n) e^{\alpha x} \cos(\beta x) \text{ or } \sin(\beta x)$$

$$Y_p = x^s (A_0 x^n + \dots + A_n) e^{\alpha x} \cos(\beta x) \\ + x^s (B_0 x^n + \dots + B_n) e^{\alpha x} \sin(\beta x)$$

(x^s is chosen so that y_1 and y_2 are not terms of Y_p .)

Variation of Parameters:

$$y'' + p(x)y' + q(x)y = g(x)$$

homogeneous solution $y = c_1 y_1 + c_2 y_2$ known

General solution is:

$$y = -y_1 \int \frac{y_2 g}{W(y_1, y_2)} dx + y_2 \int \frac{y_1 g}{W(y_1, y_2)} dx$$

$$\text{Wronskian: } W(y_1, y_2) = y_1 y_2' - y_1' y_2$$

Existence and Uniqueness Theorems

First Order, Linear Initial Value Problem:

$$y' + p(x)y = g(x), \quad y(x_0) = y_0$$

- Solution exists and is unique if p and g are continuous at x_0 .
- Solution is defined on the entire interval containing x_0 where p and g are continuous.

Note: higher order linear is the same.

First Order, General Initial Value Problem:

$$y' = f(x, y), \quad y(x_0) = y_0$$

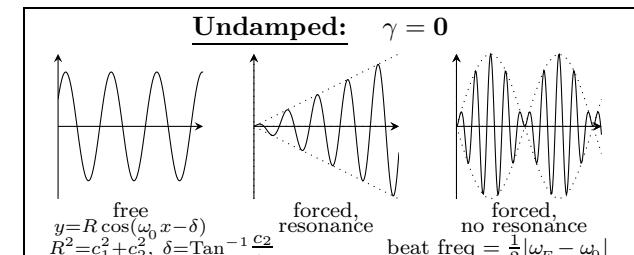
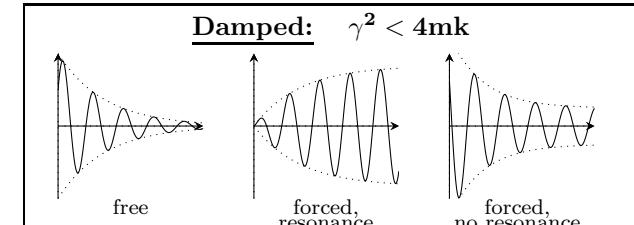
- Solution exists if f is continuous at (x_0, y_0) .
- It is unique if $\frac{\partial}{\partial y} f$ is continuous at (x_0, y_0) .
- Solutions are defined somewhere inside the rectangle containing (x_0, y_0) where f and $\frac{\partial}{\partial y} f$ are continuous.

Differential Equations as Vibrations

$$m y'' + \gamma y' + k y = F(x) \quad \begin{cases} m & \text{mass} \\ \gamma & \text{dampening} \\ k & \text{spring constant} \\ F & \text{forcing function} \end{cases}$$

- (Undamped) natural freq. $\omega_0 = \sqrt{\frac{k}{m}}$
- (Damped) quasi-frequency $\mu = \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2}$

Resonance occurs if forcing freq. \approx system freq.



Not pictured: **overdamped** ($\gamma^2 > 4mk$)
critically damped ($\gamma^2 = 4mk$)