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IMPORTANT NOTES:
1) Please make sure that you have written your student number and name above.

2) Check that the exam paper contains 6 problems.

2) Show all your work. No points will be given to correct answers without reasonable
work.



1. (20 pts.) Determine whether the Ezistence and Uniqueness Theorem for First order
IVP’s implies that there is a unique solution for the below IVP. Why or why not? Show

your work.
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(Note that if the conditions of the theorem’ are not satisfied, this does not mean that
there is NO unique solution. It simply means that the Existence and Uniqueness Theorem

DOES NOT guarantee a unique solution.)
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2. (20 pts.) Obtain the general solution to the d.e.: Py
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3. (20 pts.) Solve the d.e.: (cos?t — ycost) dt
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4. (20 pts.) Solve the L.V.P.: (tany — 2)dz + éseﬁ’y + E) dy=0, 90)=1
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5. (20 pts.) Solve the LV.P.: (22 + ) dz + 22y dy =0, g(l)=~1
(Hint: use “homogeneous” and “Bernoulli” equation methods.)
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Bonus Question: (5 pts.) Solve the d.e.: 2N (z+y+2)? = (E +2)

dx v
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