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IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 6 problems.

3) Show all your work. No points will be given to correct answers without reasonable
work.



1. Find the form of the particular solution for the method of undetermined coefficients.
DO NOT EVALUATE THE COEFFICIENTS.
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(12 pts.) 2. Find a genera.l solution to the equation y” — 6y’ + 9y =z~ 33, z > 0.
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"2y +y =0, find a second linearly. independent
(use only this method!).

(16 pts.) 3. a) If y1(z) = ze® isasolution of y
solution y2(z) using the method of reduct1on of order
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b) Using the result of part a), find the general solution of
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(16 pts.) 4. Find the general solution to the equation
y' =5z —13z7%, >0

(Hint: Can you recognize the type of this equation?)
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(16 pts.) 5. Using Laplace transform, solve the L.V.P. ;
y' — 2y +y=4sinzcosze®; y(0)=0, y0)=1

(Hint : 2sinz cosz = sin(2z))
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(16 pts.) 6. Solve the following integro-differential equation;
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