CANKAYA UNIVERSITY

Department of Mathematics

MATH 258 - Introduction to Differential Equations

FIRST MIDTERM EXAMINATION
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IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.

31.10.2016
Question | Grade | Out of
1 20
2 20
3 20
4 20
5 12
6 12
Total - 104

2) Check that the exam paper contains 6 problems.

3) Show all your work. No points will be given to correct answers without reasonable

work,
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Question 1. Solve the equation
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Question 2. Solve the equation

dy
7y = tan’(z +y).
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Question 3. Solve the equation yidx = 2idy — Zmde:z.
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Question 4. For the equation
y(1+z)dr +z(1 —y)dy=20
find an integrating factor of the form z™y™ and then solve the IVP
y(1 +z)dz +z(1 —y)dy =0, y(1) = 1.
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Question 5. Solve the equation (cos?t — ycost)dt — (1 +sint)dy = 0.
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Question 6. The solution of the following first-order exact differential equation
M(z,y)dz + N(z,y)dy = 0
is
Tsinz + cosx + zy? + In [secy + tany| = ¢,

where ¢ is a constant. Find M(z,y) and N(:i:, ).
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